Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Viruses ; 14(5)2022 05 05.
Article in English | MEDLINE | ID: covidwho-1820425

ABSTRACT

The International Virus Bioinformatics Meeting 2022 took place online, on 23-25 March 2022, and has attracted about 380 participants from all over the world. The goal of the meeting was to provide a meaningful and interactive scientific environment to promote discussion and collaboration and to inspire and suggest new research directions and questions. The participants created a highly interactive scientific environment even without physical face-to-face interactions. This meeting is a focal point to gain an insight into the state-of-the-art of the virus bioinformatics research landscape and to interact with researchers in the forefront as well as aspiring young scientists. The meeting featured eight invited and 18 contributed talks in eight sessions on three days, as well as 52 posters, which were presented during three virtual poster sessions. The main topics were: SARS-CoV-2, viral emergence and surveillance, virus-host interactions, viral sequence analysis, virus identification and annotation, phages, and viral diversity. This report summarizes the main research findings and highlights presented at the meeting.


Subject(s)
COVID-19 , Viruses, Unclassified , Viruses , Computational Biology , DNA Viruses , Humans , SARS-CoV-2
3.
Viruses ; 14(3)2022 03 18.
Article in English | MEDLINE | ID: covidwho-1765956

ABSTRACT

Gag virus-like particles (VLPs) are promising vaccine candidates against infectious diseases. VLPs are generally produced using the insect cell/baculovirus expression vector system (BEVS), or in mammalian cells by plasmid DNA transient gene expression (TGE). However, VLPs produced with the insect cell/BEVS are difficult to purify and might not display the appropriate post-translational modifications, whereas plasmid DNA TGE approaches are expensive and have a limited scale-up capability. In this study, the production of Gag VLPs with the BacMam expression system in a suspension culture of HEK293 cells is addressed. The optimal conditions of multiplicity of infection (MOI), viable cell density (VCD) at infection, and butyric acid (BA) concentration that maximize cell transduction and VLP production are determined. In these conditions, a maximum cell transduction efficiency of 91.5 ± 1.1%, and a VLP titer of 2.8 ± 0.1 × 109 VLPs/mL are achieved. Successful VLP generation in transduced HEK293 cells is validated using super-resolution fluorescence microscopy, with VLPs produced resembling immature HIV-1 virions and with an average size comprised in the 100-200 nm range. Additionally, evidence that BacMam transduction occurs via different pathways including dynamin-mediated endocytosis and macropinocytosis is provided. This work puts the basis for future studies aiming at scaling up the BacMam baculovirus system as an alternative strategy for VLP production.


Subject(s)
HIV-1 , Viruses, Unclassified , Animals , Baculoviridae/genetics , DNA , HEK293 Cells , HIV-1/genetics , Humans , Mammals , Virion/genetics , Viruses, Unclassified/genetics
4.
Arch Virol ; 167(3): 737-749, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1661699

ABSTRACT

The actin cytoskeleton and actin-dependent molecular and cellular events are responsible for the organization of eukaryotic cells and their functions. Viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), depend on host cell organelles and molecular components for cell entry and propagation. Thus, it is not surprising that they also interact at many levels with the actin cytoskeleton of the host. There have been many studies on how different viruses reconfigure and manipulate the actin cytoskeleton of the host during successive steps of their life cycle. However, we know relatively little about the interactions of SARS-CoV-2 with the actin cytoskeleton. Here, we describe how the actin cytoskeleton is involved in the strategies used by different viruses for entry, assembly, and egress from the host cell. We emphasize what is known and unknown about SARS-CoV-2 in this regard. This review should encourage further investigation of the interactions of SARS-CoV-2 with cellular components, which will eventually be helpful for developing novel antiviral therapies for mitigating the severity of COVID-19.


Subject(s)
COVID-19 , Viruses, Unclassified , Actin Cytoskeleton , Antiviral Agents/therapeutic use , Humans , SARS-CoV-2
5.
Lancet Microbe ; 3(4): e316-e323, 2022 04.
Article in English | MEDLINE | ID: covidwho-1517552

ABSTRACT

Biobanking infrastructures, which are crucial for responding early to new viral outbreaks, share pathogen genetic resources in an affordable, safe, and impartial manner and can provide expertise to address access and benefit-sharing issues. The European Virus Archive has had a crucial role in the global response to the COVID-19 pandemic by distributing EU-subsidised (free of charge) viral resources to users worldwide, providing non-monetary benefit sharing, implementing access and benefit-sharing compliance, and raising access and benefit-sharing awareness among members and users. All currently available SARS-CoV-2 material in the European Virus Archive catalogue, including variants of concern, are not access and benefit-sharing cases per se, but multilateral benefit-sharing has nevertheless occurred. We propose and discuss how a multilateral system enabling access and benefit-sharing from pathogen genetic resources, based on the European Virus Archive operational model, could help bridge the discrepancies between the current bilateral legal framework for pathogen genetic resources and actual pandemic response practices.


Subject(s)
COVID-19 , Viruses, Unclassified , Viruses , Biological Specimen Banks , COVID-19/epidemiology , DNA Viruses , Humans , Pandemics , SARS-CoV-2
6.
Front Public Health ; 8: 486, 2020.
Article in English | MEDLINE | ID: covidwho-803456

ABSTRACT

The recent outbreak of COVID-19 has infected a large number of patients, increasing the importance of adequate disinfection of the hospital environment. We conducted this study to explore environmental virus contamination and the effect of terminal disinfection in the isolation ward of patients with COVID-19. A swab kit was used to sample various surfaces in the isolation and observation wards using the smear method. The samples were immediately sent to the PCR department of the laboratory for nucleic acid detection of COVID-19. We analyzed 31 high-frequency contact sites in three isolation wards of actively sick patients, of which seven were positive (22.58%, 7/31). Positive sites included the transfer window, bed rail, buffer room door handle, toilet door handle, and toilet faucet. All 55 samples taken from the wards of cured patients and the wards after terminal disinfection were negative. Virus contamination in areas frequently touched by patients in the isolation ward was high, so the awareness of correct disinfection must be increased. Use of 1,000-2,000 mg/L chlorine-containing disinfectant in the isolation ward was effective.


Subject(s)
COVID-19 , Viruses, Unclassified , Disinfection , Hospitals , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL